Improving FFTNet vocoder with noise shaping and subband approaches

Takuma Okamoto¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹
¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

1. Introduction

- Target: High-quality statistical parametric speech synthesis and voice conversion
 - Raw audio generative models: WaveNet, SampleRNN, FFTNet and WaveRNN
 - ** Outperforming conventional concatenative and source filter vocoder syntheses
 - * Synthesis time problem due to autoregressive modeling
- Raw audio generative models with real-time synthesis
 - Parallel WaveNet and WaveRNN
 - # High quality but network structures not disclosed
 - FFTNet vocoder (Z. Jin et al., ICASSP 2018)
 - # High speed synthesis but not so high synthesis quality
- Purpose: Improving FFTNet neural vocoder
 - Realizing high quality synthesis while keeping network model size

2. FFTNet neural vocoder

- Network structure
 - Input: 256-way one hot vectors and acoustic features
 - Output: 256-way one hot vector representing 8 bit mu-law audio
 - Simpler structure than WaveNet
 - * Mainly with 1x1 conv and ReLU
- Network modifications while keeping network model size
 - Skip connections: Not effective
 - Residual connections: Effective

3. FFTNet vocoder with noise shaping

- Noise shaping method considering auditory perception
 - (K. Tachibana et al., ICASSP 2018)
 - Improving synthesis quality by reducing spectral distortion due to prediction error
 - Implemented by MLSA filter with averaged mel-cepstrums Efficient in WaveNet vocoder

4. Subband FFTNet

- Parallel training and synthesis in raw audio generative models with single-sideband filterbanks
 - Squared-root Hann window-based overlapped filterbank
 - ** Improving prediction accuracy of WaveNet by coloring each band signal (T. Okamoto et al., ASRU 2017)

Subband WaveNet vocoder

(T. Okamoto et al., ICASSP 2018)

Problem: Phase shift between subbands

Subband FFTNet with multiband input

- Simultaneously input multiband signals
 - For considering phase shift between subbands
 - Input only 1st band signals for reducing network parameters

5.Experiments

- Speech corpus (Sampling frequency: 16 kHz)
 - Japanese male voice (Training set: 5697 utterances [3.7 h])
- Input acoustic features (27 dimensions)
 - (Log) Fundamental frequency + v/uv: 2 dimensions
 - STFT-based simple mel-cepstrums: 25 dimensions
- Network model size comparison
 - 1/20 compared with WaveNet

Model	Num of params
WaveNet (g) and (h)	44,592,721
FFTNet (a) to (c)	2,251,857
Subband FFTNet (d) and (e)	1,857,105
	(each subband)
Subband FFTNet with multiband input (f)	1,988,117
	(each subband)

Objective evaluation results (Test set: 20 utts)

	Training softmax loss score	SNR [dB]	SD [dB]	MCD [dB]
(a):vanilla FFTNet (baseline)	1.89	5.20 ± 0.26	10.29 ± 0.15	3.66 ± 0.11
(b):FFTNet with residual connections	1.81	5.50 ± 0.25	9.68 ± 0.12	3.33 ± 0.08
(c):FFTNet with noise shaping	2.19	4.00 ± 0.47	$\textbf{8.19} \pm \textbf{0.05}$	$\textbf{2.84} \pm \textbf{0.06}$
(d):subband FFTNet	1.39	4.00 ± 0.27	10.76 ± 0.30	2.96 ± 0.04
(e):subband FFTNet with noise shaping	1.55	2.90 ± 0.39	9.62 ± 0.22	$\textbf{2.84} \pm \textbf{0.06}$
(f):subband FFTNet with multiband input	1.35	5.80 ± 0.36	10.84 ± 0.36	3.13 ± 0.39
(g):vanilla WaveNet	1.50	6.60 ± 0.36	9.16 ± 0.12	2.50 ± 0.08
(h):WaveNet with noise shaping	1.80	5.50 ± 0.60	7.58 ± 0.06	2.00 ± 0.07
(i):STRAIGHT	_	0.10 ± 0.47	7.09 ± 0.07	2.78 ± 0.08

- MOS evaluation condition
 - Test set: 20 utterances
 - 10 listening subjects
 - Using headphones
- MOS results
 - Improvement by proposal
 - But lower than WaveNet with noise shaping

