Improving FFTNet vocoder with noise shaping and subband approaches Takuma Okamoto¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹ ¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan #### 1. Introduction - Target: High-quality statistical parametric speech synthesis and voice conversion - Raw audio generative models: WaveNet, SampleRNN, FFTNet and WaveRNN - ** Outperforming conventional concatenative and source filter vocoder syntheses - * Synthesis time problem due to autoregressive modeling - Raw audio generative models with real-time synthesis - Parallel WaveNet and WaveRNN - # High quality but network structures not disclosed - FFTNet vocoder (Z. Jin et al., ICASSP 2018) - # High speed synthesis but not so high synthesis quality - Purpose: Improving FFTNet neural vocoder - Realizing high quality synthesis while keeping network model size #### 2. FFTNet neural vocoder - Network structure - Input: 256-way one hot vectors and acoustic features - Output: 256-way one hot vector representing 8 bit mu-law audio - Simpler structure than WaveNet - * Mainly with 1x1 conv and ReLU - Network modifications while keeping network model size - Skip connections: Not effective - Residual connections: Effective ### 3. FFTNet vocoder with noise shaping - Noise shaping method considering auditory perception - (K. Tachibana et al., ICASSP 2018) - Improving synthesis quality by reducing spectral distortion due to prediction error - Implemented by MLSA filter with averaged mel-cepstrums Efficient in WaveNet vocoder #### 4. Subband FFTNet - Parallel training and synthesis in raw audio generative models with single-sideband filterbanks - Squared-root Hann window-based overlapped filterbank - ** Improving prediction accuracy of WaveNet by coloring each band signal (T. Okamoto et al., ASRU 2017) Subband WaveNet vocoder (T. Okamoto et al., ICASSP 2018) Problem: Phase shift between subbands #### Subband FFTNet with multiband input - Simultaneously input multiband signals - For considering phase shift between subbands - Input only 1st band signals for reducing network parameters ## 5.Experiments - Speech corpus (Sampling frequency: 16 kHz) - Japanese male voice (Training set: 5697 utterances [3.7 h]) - Input acoustic features (27 dimensions) - (Log) Fundamental frequency + v/uv: 2 dimensions - STFT-based simple mel-cepstrums: 25 dimensions - Network model size comparison - 1/20 compared with WaveNet | Model | Num of params | |---|----------------| | WaveNet (g) and (h) | 44,592,721 | | FFTNet (a) to (c) | 2,251,857 | | Subband FFTNet (d) and (e) | 1,857,105 | | | (each subband) | | Subband FFTNet with multiband input (f) | 1,988,117 | | | (each subband) | #### Objective evaluation results (Test set: 20 utts) | | Training softmax loss score | SNR [dB] | SD [dB] | MCD [dB] | |---|-----------------------------|-----------------|-----------------------------------|-----------------------------------| | (a):vanilla FFTNet (baseline) | 1.89 | 5.20 ± 0.26 | 10.29 ± 0.15 | 3.66 ± 0.11 | | (b):FFTNet with residual connections | 1.81 | 5.50 ± 0.25 | 9.68 ± 0.12 | 3.33 ± 0.08 | | (c):FFTNet with noise shaping | 2.19 | 4.00 ± 0.47 | $\textbf{8.19} \pm \textbf{0.05}$ | $\textbf{2.84} \pm \textbf{0.06}$ | | (d):subband FFTNet | 1.39 | 4.00 ± 0.27 | 10.76 ± 0.30 | 2.96 ± 0.04 | | (e):subband FFTNet with noise shaping | 1.55 | 2.90 ± 0.39 | 9.62 ± 0.22 | $\textbf{2.84} \pm \textbf{0.06}$ | | (f):subband FFTNet with multiband input | 1.35 | 5.80 ± 0.36 | 10.84 ± 0.36 | 3.13 ± 0.39 | | (g):vanilla WaveNet | 1.50 | 6.60 ± 0.36 | 9.16 ± 0.12 | 2.50 ± 0.08 | | (h):WaveNet with noise shaping | 1.80 | 5.50 ± 0.60 | 7.58 ± 0.06 | 2.00 ± 0.07 | | (i):STRAIGHT | _ | 0.10 ± 0.47 | 7.09 ± 0.07 | 2.78 ± 0.08 | - MOS evaluation condition - Test set: 20 utterances - 10 listening subjects - Using headphones - MOS results - Improvement by proposal - But lower than WaveNet with noise shaping